

BesaFHIR Guide

http://www.besasoftware.com

Version 1.X

2021-04-05

Besa Software - FHIR Guide

2-11

Contents

Contents ... 2

Introduction .. 3

Installation .. 4

Delphi versions ... 4

Quick Start .. 5

Create a FHIR Client .. 6

CRUD interactions .. 7

Besa Software - FHIR Guide

3-11

Introduction

A light-weight and fast FHIR client. It use Indy's HTTP component (TIdHTTP) and Windows
native http client (TNetHTTPClient) for connecting. For FHIR object model, with support for
efficiently parsing and writing in JSON and XML format.

BesaFHIR is Delphi components for handling FHIR (Fast Healthcare Interoperability

Resources) messages. Besa FHIR can generate and parse JSON and XML messages. You can develop
easy your applications for communicate your healthcare systems.

■ Supports STU3,R4 version.
■ You can use with Delphi 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10,

10.1,10.2, 10.3, 10.4.
■ %100 Native pascal code. No DLL No OCX.
■ It's support message groups and nested groups.
■ Support for all FHIR data types.
■ Licensed royalty-free per developer, per team, or per site.

Besa Software - FHIR Guide

4-11

Installation

Delphi versions

1. Run your setup file and install it.
2. Please add installation path to Delphi Editor’s Lib and Search Path.

Besa Software - FHIR Guide

5-11

Quick Start

This is the documentation of the the settings of the TbsFhirClient and the CRUD interactions

you can perform with it. We will then give some examples of search interactions, and explain how to
perform operations and transactions.

Before you create a fhir client, you need to load the message library. This library contains FHIR

definitions. A library was created for each FHIR version.

Library names formatted as BSFRXX.BSL, XX is FHIR release name.
For FHIR STU 3 version library name BSFRSTU3.BSL.

//Load library...

procedure TForm1.FormCreate(Sender: TObject);

begin

 BSFHIRLibrary.LoadFromFile('BSFRSTU3.BSL');

end;

Besa Software - FHIR Guide

6-11

Create a FHIR Client

Before we can do any of the interactions, we have to create a new TbsFhirClient instance.
This is done by passing the url of the FHIR server's endpoint as a parameter to the constructor:

FhirClient communication options

To specify the preferred format JSON or XML of the content to be used when communicating with
the FHIR server, you can use the EncodingFormat attribute:

The FHIR client will send all requests in the specified format. The default setting for this field is JSON.

When communicating the preferred format to the server, this can either be done by appending
_format=[format] to the URL. The client uses the _format by default, but if you want, you can disable
_format parameter:

client.UseFormatParam := false;

client.EncodingFormat := ffmtJSON; // JSON is default encoding format.

var

 client: TbsFHIRClient;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 //for use Indy

 client.HttpType:=hcIndy;

 client.HttpIndy:=IdHttp1;

 //for use TNetHTTPClient

 //client.HttpType:=hcNetClient;

 //client.HttpNetClient:=NetHTTPClient1;

end;

Besa Software - FHIR Guide

7-11

CRUD interactions

A TbsFhirClient named client has been setup in the previous topic, now let's do something
with it.

Create a new resource

Assume we want to create a new resource instance and want to ask the server to store it for us. This
is done using Create.

Sample Code:

Reading an existing resource

var

 client: TbsFHIRClient;

 patient : TPatient;

 id : string;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 client.HttpIndy:=IdHTTP1;

 patient:=TPatient.Create;

 patient.active:=True;

 patient.text:=TNarrative.Create;

 patient.text.status:='generated';

 patient.identifier.Add;

 patient.identifier[0].system:='urn:system';

 patient.identifier[0].value:='12345';

 patient.name_.Add; //Adds new THumanName

 patient.name_[0].family:='James';

 patient.name_[0].given[0]:='John';

 Id:= client.CreateResource(patient);

 patient.Free;

 client.Free;

end;

var

 client: TbsFHIRClient;

 patient : TPatient;

 id : string;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 patient:=TPatient.Create;

 // ...

 // set up data

 // ...

 id := client.CreateResource(patient);

end;

Besa Software - FHIR Guide

8-11

To read the data for a given resource instance from a server, you'll need its technical id. You
may have previously stored this after a Create, or you have found its address in a ResourceReference
(e.g. Observation.Subject.Reference).

The Read interaction on the TbsFhirClient has two overloads to cover both cases. Furthermore, it
accepts both relative paths and absolute paths (as long as they are within the endpoint passed to the
constructor of the TbsFhirClient).

 Note that Read can be used to get the most recent version of a resource as well as a specific
version, and thus covers the two '˜logical' REST interactions ReadResource and ReadResourceV.

Updating a resource

Once you have retrieved a resource, you may edit its contents and send it back to the server.
This is done using the Update interaction. It takes the resource instance previously retrieved as a
parameter:

There's always a chance that between retrieving the resource and sending an update,

someone else has updated the resource as well. Servers supporting version-aware updates may

// Read the current version of a Patient resource with technical id '1'

var

 client: TbsFHIRClient;

 patient : TPatient;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 client.HttpIndy:=IdHTTP1;

 // Read patient info.

 patient:=TPatient(client.ReadResource('Patient','1'));

 // Add a name to the patient, and update

 patient.name_[0].family:='James1';

 patient.name_[0].given[0]:='Given';

 client.UpdateResource(patient);

 patient.Free;

 client.Free;

end;

// Read the current version of a Patient resource with technical id '1'

var

 client: TbsFHIRClient;

 patient : TPatient;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 client.HttpIndy:=IdHTTP1;

 patient:=TPatient(client.ReadResource('Patient','1'));

 patient.Free;

 client.Free;

end;

Besa Software - FHIR Guide

9-11

refuse your update in this case and return a HTTP status code 409 (Conflict), which causes the
Update interaction to throw a Exception with the same status code.

Deleting a Resource

The Delete interaction on the TbsFHIRClient deletes a resource from the server. It is up to

the server to decide whether the resource is actually removed from storage, or whether previous
versions are still available for retrieval. The Delete interaction has multiple overloads to allow you to
delete based on a url or a resource instance:

The Delete interaction will fail and throw a Exception if the resource was already deleted or
if the resource did not exist before deletion, and the server returned an error indicating that.

Note that sending an update to a resource after it has been deleted is not considered an
error and may effectively "undelete" it.

Looking at LastResult

After the TbsFhirClient has received a response from the server, you will usually work with
the resource instance that was returned. If you still need to check the response from the server, for
example to lookup the technical id or version id the server has assigned to your resource instance,
you can do this by looking at the LastResponseCode property of the FhirClient.

Searching for resources

client.CreateResource(patient);

if (client.LastResponseCode = 201) then

begin

 ShowMessage('The response text for the resource is: ' +

client.LastResponseText);

end;

var

 client: TbsFHIRClient;

 //patient : TPatient;

begin

 client := TbsFHIRClient.Create('http://server.url/');

 client.HttpIndy:=IdHTTP1;

 //patient:=TPatient(client.ReadResource('Patient','1'));

 //client.DeleteResource(patient);

 // or

 client.DeleteResource('Patient','1');

 client.UpdateResource(patient);

 //patient.Free;

 client.Free;

end;

Besa Software - FHIR Guide

10-11

FHIR has extensive support for searching resources through the use of the REST interface.
Describing all the possibilities is outside the scope of this document, but much more details can be
found online in the specification.

The FHIR client has a few operations to do basic search.

Searching within a specific type of resource

The most basic search is the client's Search(AResourceName: String; Params: String)
function. It searches all resources of a specific type based on zero or more criteria. Criteria must
conform to the parameters as they would be specified on the search URL in the REST interface, so
for example searching for all patients named 'James' would look like this

The search will return a Bundle containing entries for each resource found. It is even
possible to leave out all criteria, effectively resulting in a search that returns all resources of the
given type.

var

 results:TBundle;

begin

 results:= client.Search('Patient', 'family=James');

end;

Besa Software - FHIR Guide

11-11

Sample code:

var

 client:TbsFHIRClient;

 bundle:TBundle;

 i:integer;

begin

 client:=TbsFHIRClient.Create('http://server.url/');

 client.HttpIndy:=IdHTTP1;

 bundle :=TBundle(client.Search('Patient', 'family=James'));

 ShowMessage('Total:'+IntToStr(bundle.total));

 if bundle.total > 0 then

 begin

 mLog.Lines.Append('--- id(s)---');

 for i:=0 to bundle.entry.Count-1 do

 begin

 mLog.Lines.Add(

 TPatient(bundle.entry[i].resource).id

);

 end;

 end;

 bundle.Free;

 client.Free;

end;

